Collagen Fiber Re-Alignment and Uncrimping in Response to Loading: Determining Structure-Function Relationships Using a Developmental Tendon Mouse Model

نویسندگان

  • Kristin Suzanne Miller
  • Louis J. Soslowsky
چکیده

Collagen fiber re-alignment and uncrimping are postulated mechanisms of structural response to load. It has been suggested that fibers re-orient in the direction of load and then "uncrimp" before collagen is tensioned and that in general, the structure is a result of the function tendons perform. However, little is known about how fiber re-alignment and uncrimping change in response to load, how this change relates to tendon mechanical properties, and if these changes are dependent on the underlying structure. Throughout postnatal development, dramatic structural and compositional changes occur in tendon. Postnatal tendons, with immature collagen networks, may respond to load in a different manner and timescale than mature collagen networks. Therefore, the overall objective of this study was to quantify the mechanical properties and structural response to load in a developmental mouse tendon model at 4, 10, 28 and 90 days old. Local collagen fiber re-alignment and crimp frequency were quantified throughout mechanical testing and local mechanical properties were measured. Throughout development, fiber re-alignment occurred at different points in the mechanical testing protocol. At early development, re-alignment was not identified until the linear (4 days) or toe-regions (10 days) of the mechanical test suggesting that fibers required a prolonged exposure to mechanical load before responding and that the immature collagen network present may delay realignment. The uncrimping of collagen fibers was identified during the toe-region of the mechanical test at all ages suggesting that crimp contributes to tendon nonlinear behavior. Additionally, results at 28 and 90 days suggested that collagen fiber crimp frequency decreased with increasing number of preconditioning cycles, which may affect toe-region properties. Mechanical properties and cross-sectional area increased throughout development. The insertion site demonstrated lower moduli values and a more disorganized fiber distribution compared to the midsubstance at all ages suggesting it experiences multi-axial loads. Further, the tendon locations demonstrated different re-alignment and crimp behaviors suggesting that locations may respond to load differently and develop at different rates. Results from this study suggest that structure affects the tendon's ability to respond to load and that the loading protocol applied may affect the measurement of mechanical properties. Degree Type Dissertation Degree Name Doctor of Philosophy (PhD) Graduate Group Bioengineering First Advisor Louis J. Soslowsky This dissertation is available at ScholarlyCommons: http://repository.upenn.edu/edissertations/551

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tensile properties and fiber alignment of human supraspinatus tendon in the transverse direction demonstrate inhomogeneity, nonlinearity, and regional isotropy.

A recent study (Lake et al., 2009); reported the properties of human supraspinatus tendon (SST) tested along the predominant fiber direction. The SST was found to have a relatively disperse distribution of collagen fibers, which may represent an adaptation to multiaxial loads imposed by the complex loading environment of the rotator cuff. However, the multiaxial mechanical properties of human S...

متن کامل

Effect of fiber distribution and realignment on the nonlinear and inhomogeneous mechanical properties of human supraspinatus tendon under longitudinal tensile loading.

Tendon exhibits nonlinear stress-strain behavior that may be partly due to movement of collagen fibers through the extracellular matrix. While a few techniques have been developed to evaluate the fiber architecture of other soft tissues, the organizational behavior of tendon under load has not been determined. The supraspinatus tendon (SST) of the rotator cuff is of particular interest for inve...

متن کامل

A Fibre-Reinforced Poroviscoelastic Model Accurately Describes the Biomechanical Behaviour of the Rat Achilles Tendon

BACKGROUND Computational models of Achilles tendons can help understanding how healthy tendons are affected by repetitive loading and how the different tissue constituents contribute to the tendon's biomechanical response. However, available models of Achilles tendon are limited in their description of the hierarchical multi-structural composition of the tissue. This study hypothesised that a p...

متن کامل

Effect of Collagen Viscoelasticity on the Mechanical Response of Articular Cartilage

INTRODUCTION Articular cartilage is known to exhibit strong transient mechanical behavior. When subjected to high strainrate loading, its apparent stiffness can be 10 times greater than its stiffness at equilibrium. However, the mechanism of this strain-rate dependent response is not completely understood. While some studies have shown evidence of a fluid-flow dominant mechanism of the strain-r...

متن کامل

Meniscus Tissue Engineering with Nanofibrous Scaffolds

The fibrocartilaginous menisci dwell between the articular surfaces of the knee and play a central role in joint function. Damage through trauma or degenerative changes is a common orthopaedic injury, disrupts the meniscus mechanical function, and leads to the precocious development of osteoarthritis. The current standard of treatment is removal of the damaged tissue, a procedure that does not ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016